

In: 2020 ACM/IEEE 47th annual international symposium on computer architecture (ISCA). Reddi VJ, Cheng C, Kanter D, Mattson P, Schmuelling G, Wu C-J, Anderson B, Breughe M, Charlebois M, Chou W, et al (2020) Mlperf inference benchmark. Redmon J, Farhadi A (2018) YOLOv3: An Incremental Improvement. ICRA workshop on open source software, vol 3. Quigley M et al (2009) ROS: an open-source robot operating system.

In: 31st euromicro conference on real-time systems (ECRTS 2019), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik Pujol R, Tabani H, Kosmidis L, Mezzetti E, Abella J, Cazorla FJ (2019) Generating and exploiting deep learning variants to increase heterogeneous resource utilization in the Nvidia Xavier. Paz D, Lai P-J, Chan N, Jiang Y, Christensen HI, Autonomous vehicle benchmarking using unbiased metrics. Merkel D (2014) Docker: lightweight Linux containers for consistent development and deployment. Koopman P, Wagner M (2016) Challenges in autonomous vehicle testing and validation. Intel (2020) Intel oneAPI Math Kernel Library: The fastest and most-used math library for Intel-based systems. In: Conference on computer vision and pattern recognition (CVPR) Geiger A, Lenz P, Urtasun R (2012) Are we ready for autonomous driving? The kitti vision benchmark suite. ĮEMBC (2019) The \(\) Benchmark: A Performance Measurement and Optimization Tool for Automotive Companies Building Next-Generation Advanced Driver-Assistance Systems (ADAS). Int J Robot Res 29(5):485–501ĮEMBC (2019) Introducing the EEMBC MLMark Benchmark. In: Microprocessors Report, The Linly Group, Juneĭolgov D, Thrun S, Montemerlo M, Diebel J (2010) Path planning for autonomous vehicles in unknown semi-structured environments. ArXiv preprint arXiv:1903.11027ĭemler M (2017) Xavier simplifies self-driving cars. Nuscenes: a multimodal dataset for autonomous driving. ArXiv preprint arXiv:1410.0759Ĭaesar H, Bankiti V, Lang AH, Vora S, Liong VE, Xu Q, Krishnan A, Pan Y, Baldan G, Beijbom O. ACM Trans Math Softw 28(2):135–151Ĭhetlur S et al., CUDNN: Efficient primitives for deep learning. īlackford L et al (2002) An updated set of basic linear algebra subprograms (BLAS). īaidu Apollo, an open autonomous driving platform (2018). Xianyi Z, Qian W, Saar W, Chothia Z, Shaohu C, Wen L et al (2020) An optimized BLAS library (OpenBLAS).
BENCHMARK AUTOMOTIVE SOFTWARE
Ĭlint Whaley R, Aberdeen D, Brett M, Coult N, Castaldo T, Dittrich M, Gaudet D, Goto K, Horner J, Maguire C, Mattox T, Deitz H, Nguyen V, Strazdins P, Ruhe J, Soendergaard P, Staelin C (2018) Automatically Tuned Linear Algebra Software (ATLAS). ĪpolloAuto (2018) Multi-sensor fusion localization.

ĪpolloAuto (2018) Traffic light perception. ĪpolloAuto (2018) 3D obstacle perception. IEEE Micro 38(6):46–55ĪpolloAuto, Apollo 3.0 software architecture (2018). In: Proceedings of the 35th annual ACM symposium on applied computing, pp 1953–1962Īlcaide S, Kosmidis L, Tabani H, Hernandez C, Abella J, Cazorla FJ (2018) Safety-related challenges and opportunities for GPUS in the automotive domain. IEEE Real-Time Embed Technol Appl Symp (RTAS) IEEE 2020:267–280Īlcon M, Tabani H, Abella J, Kosmidis L, Cazorla FJ (2020) En-route: on enabling resource usage testing for autonomous driving frameworks. Alcon M, Tabani H, Kosmidis L, Mezzetti E, Abella J, Cazorla FJ (2020) Timing of autonomous driving software: problem analysis and prospects for future solutions.
